日韩视频免费播放_国产精品老牛视频|HD中文字幕在线播放,久久久久久久98,日韩激情一区二区,欧美久久久久久

Computational Insights into Kinetic Hindrance Affecting Crystallization of Stable Forms of Active Pharmaceutical Ingredients

Computational Insights into Kinetic Hindrance Affecting Crystallization of Stable Forms of Active Pharmaceutical Ingredients

2 min read
分享鏈接

Cryst. Growth Des. 2020, 20, 3, 1512–1525
期刊:Crystal Growth and Design
作者:Yuriy Abramov et al.
時間:2020-01-30

A computational investigation of the potential source of kinetic hindrance for the late appearance of pharmaceutically relevant stable forms of ritonavir, rotigotine, ranitidine hydrochloride, and pharmaceutical compound A was performed along the crystallization coordinates of the relative rates of conformational interconversion, crystal nucleation, and growth. Conformational distribution, classical nucleation, and growth morphology theories were utilized, respectively, to compare the results with those of polymorphic systems, famotidine, nimodipine, paracetamol, indomethacin, tolfenamic acid, and mebendazole for which kinetic hindrance of the stable forms was not reported. The results did not support a potential mechanism of kinetic hindering of the stable polymorphic form due to nucleation and growth limited crystallization. However, a low population of crystallographic conformations of the stable forms in solution allowed us to distinguish the behavior of the late-appearing stable systems from other polymorphic systems. To account for the low crystallographic conformer population as the potential source for kinetic hindrance, we suggest that self-association of the monomeric active pharmaceutical ingredients molecules precedes over nucleation in solution. As an implication to crystal structure prediction studies, it is suggested to complement the analysis of the lattice energy landscape of conformational polymorphs by the prediction of crystallographic conformers distribution in the gas phase and in solvents of potential interest.

人工智能 + 機器人
技術平臺驅動行業創新

推薦閱讀

Templated Nucleation of Clotrimazole and Ketoprofen on Polymer Substrates
Tale of Two Polymorphs: Investigating the Structural Differences and Dynamic Relationship between Nirmatrelvir Solid Forms (Paxlovid)
WUREN: Whole-modal union representation for epitope prediction
Structural insights into drug transport by an aquaglyceroporin