日韩视频免费播放_国产精品老牛视频|HD中文字幕在线播放,久久久久久久98,日韩激情一区二区,欧美久久久久久

Perspective on SAMPL and D3R blind prediction challenges for Physics-Based Free Energy Methods

Perspective on SAMPL and D3R blind prediction challenges for Physics-Based Free Energy Methods

2 min read
分享鏈接

“10.1021/bk-2021-1397.ch003 Publication Date:November 19, 2021”
期刊:ACS book:Free Energy Methods in Drug Discovery: Current State and Future Directions
作者:Nicolas Tielker, Lukas Eberlein , Oliver Beckstein, Stefan Güssregen, Bogdan I. Iorga, Stefan M. Kast, and Shuai Liu*
時間:2021-11-19

Solvation and binding thermodynamics of a drug-like molecule is quantified by the respective free energy (FE) change that governs physical properties like log P/log D and binding affinities as well as more complex features such as solubility or permeability. The drug discovery process benefits significantly from reliable predictions of FEs, which are hence a key area for the theoretical and modeling community. Despite the clear physical background rooted in statistical mechanics, the desired accuracy goal is hard to achieve. Current modeling methods still need to be improved in various areas related to the FE problem, such as the quality of force fields and quantum-mechanical approximations, the efficiency of sampling algorithms as well as the robustness of computational workflows. In this context, blind prediction challenges, where participants are tasked with testing their computational methods and workflows on compound property predictions without knowing the experimental data, are excellent testbeds to evaluate and improve the modeling methodology. SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) and Drug Design Data Resource-Grand Challenges (D3R-GCs) represent widely known initiatives demonstrating how the “blind prediction” concept boosts the development of FE predictions. In this chapter, we summarize the status of recent SAMPL and D3R-GCs from the point of view of long-time participants, with the aim of providing the community with a collection of datasets and references.

人工智能 + 機器人
技術平臺驅動行業創新

推薦閱讀

Templated Nucleation of Clotrimazole and Ketoprofen on Polymer Substrates
Tale of Two Polymorphs: Investigating the Structural Differences and Dynamic Relationship between Nirmatrelvir Solid Forms (Paxlovid)
WUREN: Whole-modal union representation for epitope prediction
Structural insights into drug transport by an aquaglyceroporin