日韩视频免费播放_国产精品老牛视频|HD中文字幕在线播放,久久久久久久98,日韩激情一区二区,欧美久久久久久

Solubility of paracetamol in ethanol by molecular dynamics using the extended Einstein crystal method and experiments

Solubility of paracetamol in ethanol by molecular dynamics using the extended Einstein crystal method and experiments

2 min read
分享鏈接

J. Chem. Phys. 150, 094107 (2019)
期刊:The Journal of Chemical Physics
作者:Michael A. Bellucci
時間:2019-03-05

Li and co-workers [Li et al., J. Chem. Phys. 146, 214110 (2017)] have recently proposed a methodology to compute the solubility of molecular compounds from first principles, using molecular dynamics simulations. We revise and further explore their methodology that was originally applied to naphthalene in water at low concentration. In particular, we compute the solubility of paracetamol in an ethanol solution at ambient conditions. For the simulations, we used a force field that we previously reparameterized to reproduce certain thermodynamic properties of paracetamol but not explicitly its solubility in ethanol. In addition, we have determined the experimental solubility by performing turbidity measurements using a Crystal16 over a range of temperatures. Our work serves a dual purpose: (i) methodologically, we clarify how to compute, with a relatively straightforward procedure, the solubility of molecular compounds and (ii) applying this procedure, we show that the solubility predicted by our force field (0.085 ± 0.014 in mole ratio) is in good agreement with the experimental value obtained from our experiments and those reported in the literature (average 0.0585 ± 0.004), considering typical deviations for predictions from first principle methods. The good agreement between the experimental and the calculated solubility also suggests that the method used to reparameterize the force field can be used as a general strategy to optimize force fields for simulations in solution.

人工智能 + 機器人
技術平臺驅動行業創新

推薦閱讀

Templated Nucleation of Clotrimazole and Ketoprofen on Polymer Substrates
Tale of Two Polymorphs: Investigating the Structural Differences and Dynamic Relationship between Nirmatrelvir Solid Forms (Paxlovid)
WUREN: Whole-modal union representation for epitope prediction
Structural insights into drug transport by an aquaglyceroporin